Basic principles of car lighting technology

Here you will find useful basic information and handy tips relating to lighting technology and light sources in vehicles.

Lighting technology plays a very important role in motor vehicles with regard to the safety of vehicle occupants and that of other road users. On this page, we will explain to you the basic principles of automotive lighting technology and show you the design and function of the most common light sources. You will also find the causes for failure of light sources, as well as practical tips for their replacement.

Important safety note
The following technical information and practical tips have been compiled by HELLA in order to provide professional support to vehicle workshops in their day-to-day work. The information provided on this website is intended for suitably qualified personnel only.

VEHICLE LIGHTING TECHNOLOGY VARIABLES: BASIC PRINCIPLES

Below you will find a summary of the most important basic terms in lighting technology and the respective units of measure for the evaluation of the properties of bulbs and lamps:

Luminous efficiency ŋ

Unit: lumen per watt [lm/W]

 

Luminous efficiency h specifies the rate of efficiency with which the consumed electrical power is transformed into light.

Colour temperature K

Unit: Kelvin [K]

 

Kelvin is the unit for colour temperature. The higher the temperature of a light source, the greater the proportion of blue and the lower the proportion of red is in the colour spectrum.

 

A bulb with warm white light has a colour temperature of approx. 2700 K. However, at 4250 K, a gas discharge lamp (D2S) has a cool white light that is more similar to daylight (approx. 5600 K).

LIGHT SOURCES: OVERVIEW

Light sources are thermal radiators that produce light through thermal energy. This means the more strongly a light source is heated up, the higher its luminous intensity will be.

 

The low efficiency of the thermal radiator (8 % light radiation) only allows a relatively low luminous efficiency in comparison with gas discharge lamps (28 % light radiation). In recent years, LEDs have been used more and more as the light source in motor vehicles.

CYCLE PROCESS IN A HALOGEN BULB

The tungsten filament is made to glow by the addition of electrical energy. This leads to metal evaporating from the filament. Thanks to a halogen filling (iodine or bromine) in the light, the filament temperatures increase to almost the melting point of tungsten (approx. 3400 °C).

 

This results in high light output. In the direct vicinity of the hot bulb wall, the evaporated tungsten combines with the filling gas to form a translucent gas (tungsten halide). If the gas approaches the filament again, it breaks down due to the high filament temperature and forms a homogenous tungsten layer.

 

To keep this cycle going, the outside temperature of the light bulb must be 300 °C. To achieve this, the quartz glass bulb has to fit closely round the filament.
A further advantage is that a higher filling pressure can be used, thus combating tungsten evaporation.

 

The gas composition in the bulb is decisive for the luminous efficiency. The addition of small amounts of inert gases such as xenon reduces heat dissipation from the filament.

There are two different types of halogen bulb available. The types H1, H3, H7, H9, H11 and HB3 only have one filament. They are used for low beam and high beam. The H4 bulb has two filaments, one for low beam and one for high beam.

 

The filament for low beam is fitted with a cover cap. This has the task of covering the dazzling share of the light and producing the cut-off line.

 

H1+30/50/90 and H4+30/50/90 are advanced developments of conventional H1 or H4 bulbs with an inert gas filling.

Advantages/differences of halogen bulbs compared with standard bulbs

  • Filament thinner
  • Can be operated at higher temperatures
  • Higher luminance, up to 30/50/90% more between
  • 50 and 100 meters in front of the vehicle and a range of illumination increased by up to 20 meters
  • More driving safety at night and in adverse weather conditions

 

H7 bulbs have a higher luminance, lower power consumption, and better light quality in comparison to H1 bulbs. These are also available as H7+30/50/90.

Comparison between filament (halogen) / light arc gas discharge lamp (xenon)

Comparison between halogen filament and xenon light arc
  Halogen bulb (H7) Gas discharge lamp
Light source Filament Light arc
Luminance 1450 cd/m2 3000 cd/m2
Power 55 W 35 W
Energy balance 8 % light radiation
92 % heat radiation
28 % light radiation
58 % heat radiation
14 % UV radiation
Service life approx. 500 h 2500 h
Vibration-proof to a certain extent yes
Ignition voltage no yes 23,000 V (3rd generation)
Electronic control no yes

 

FACTORS THAT INFLUENCE A VEHICLE INTERIOR LIGHT SOURCE: COMPARISON

Despite regeneration within the bulb, the tungsten wire gradually becomes worn, thus limiting the service life.

The service life and the luminous efficiency depend to a large extent on the existing supply voltage, among other factors.

 

As a rule of thumb it can be said: If the supply voltage of a light is increased by 5%, the luminous flux increases by 20% but at the same time the service life is cut by half.

For this reason, series resistors are used in some vehicle types to prevent the supply voltage from exceeding 13.2 V. In today's modern vehicles, the voltage is adjusted through pulse-width modulation.

 

In the case of undervoltage, e.g. if the alternator is faulty, the opposite is the case. The light now has a significantly higher red share and the luminous efficiency is correspondingly lower.

LIGHTING TECHNOLOGY TIPS - LIGHT SOURCES: PRACTICAL TIPS

  • Xenon headlights require a high voltage for ignition, which is why the ballast voltage supply connector should always be removed before any work is carried out on the headlamps.
  • When using a new bulb, never touch the new glass bulb since fingerprints will be burnt on and make the bulb opaque.
  • If a xenon bulb breaks in a closed room (workshop), the room should be ventilated to prevent a health hazard due to toxic gases. D3 and D4 xenon lamps no longer contain mercury and are therefore more environmentally compatible.
  • Standard filament and halogen bulbs do not contain any materials which are problematical from an environmental point of view, and can be disposed of with normal household waste.
  • Xenon bulbs are special waste. If the bulb is faulty but the interior glass bulb is still intact, it has to be disposed of as special waste since the gas/metal vapor mixture contains mercury and is thus extremely toxic when inhaled. If the glass bulb has been destroyed e.g. in an accident, the xenon bulb can be disposed of with normal household waste since the mercury will have evaporated.
  • In D3 and D4 xenon lamps, the mercury was replaced with non-toxic zinc iodide. These bulbs can be disposed of with normal household waste.
  • The waste code for disposal is: 060404.
  • There are no separate tips for LEDs, as these usually cannot be replaced.

BULB CONFIGURATION TOOL - PASSENGER CARS: PARTS IDENTIFICATION

How helpful is this article for you?

Not helpful at all

Very helpful

Please tell us what you did not like.
Many thanks. But before you go.

Sign up for our free HELLA TECH WORLD newsletter to receive the latest technical videos, car repair advice, training course information, marketing campaign details and diagnostic tips.

Show additional information on our newsletter Hide additional information on our newsletter

Register for our free HELLA TECH WORLD newsletter to stay up-to-date with the latest technical videos, car repair advice, trainings, diagnostic tips and marketing campaigns.

Together we can get cars back on the road quickly!

Please note:
You will only be subscribed to the newsletter once you have clicked on the confirmation link in the notification e-mail you will receive shortly!

Data Protection | Unsubscribe

Please note:
You will only be subscribed to the newsletter once you have clicked on the confirmation link in the notification e-mail you will receive shortly!

Data Protection | Unsubscribe

Almost there!

All you need to do is confirm your sign up!
We've sent an e-mail to your email address.

Check your inbox and click on the confirmation link to start receiving HELLA TECH WORLD updates.

Wrong e-mail or no confirmation received?
Click here to enter it again.