Please select the image to open the gallery.
11/25/2014
Xenon headlamps help save lives. If all of the vehicles on German roads were equipped with xenon headlamps, the number of accidents occurring at night would be reduced by an estimated 50%, and traffic fatalities during the same period would decrease by 18%.[1] Despite the striking benefits of xenon headlamps, more than half of all Germans are not adequately informed about this type of head-lamp system, and almost as many cannot name even one of the benefits of xenon head-lamps. This stands in stark contrast to the high levels of owner satisfaction with vehicles equipped with this type of system (96%).[2] Xenon headlamps generate light based on the principle of gas discharge. The high voltage required to ignite the xenon gas – 20,000 volts – is generated by an electronic ballast.
In bi-xenon headlamps, the low beam and high beam lights are generated with just one projection module, which is mechanically switched between low and high beams via a shutter in the headlamp. Since the light retains its color and intensity, the human eye perceives the illumination as unchanged. Compared to a halogen low beam, a xenon low beam is characterized by a brighter and more widely illuminated road. The range of the high beam is much greater, and the edges of the road are illuminated more clearly.
With xenon headlamps, the automatic or dynamic headlamp leveling systems always ensure correct beam settings depending on the load, the braking process and/or vehicle acceleration. The vehicle load status is measured by inductive or magnetoresistive axle sensors, and head-lamps are repositioned using servomotors. With dynamic headlamp leveling, the vehicle speed is processed via the speedometer signal. This means that the lamps can quickly compensate for braking and acceleration processes.
The complete xenon system also includes a power wash system that keeps the headlamp cover lens clean so that the xenon light is directed onto the road and drivers of oncoming vehicles do not have to contend with added glare.
Dynamic bend lighting was introduced in 2003 to provide drivers with an improved, larger visibility range. In this system, light modules rotate according to the steering angle. The next stage in development of advanced headlamp systems came in 2005, with the introduction of the Adaptive Frontlighting System (AFS). Based on the VarioX module, headlamp light distribution is adapted to the specific situation according to the vehicle’s speed and steering angle. Then, in 2009, a new breakthrough was achieved: For the first time ever, a headlamp system was combined with a camera as a sensor, allowing the combined unit to rely on data collected from the vehicle’s surroundings alongside data from the vehicle itself. When the adaptive cut-off line (aCOL) is generated in this way, the light cone of the vehicle’s headlamps is controlled so that it ends in front of the other vehicles. Today’s state-of-the-art glare-free high beam systems go one step further, automatically masking areas of the road where lighting could annoy other drivers.